PROJECT PARTNERS

DEMONSTRATOR BOARD

A functional demonstrator board is planned (see Fig. 4), in order to show the operation of the MORAL chip in a real system.

This board will be used for dissemination activities, e.g., presentation on fairs.

EMBEDDING INNOVATIONS

GAbsInt

innovations for high performance microelectronics

Export-restriction-free Rad-hard Microcontroller for Space Applications

PROJECT PARTNERS

- 1. IHP GmbH, Germany Coordinator
- 2. REDCAT DEVICES SRL, Italy
- 3. SYSGO GmbH, Germany
- 4. THALES ALENIA SPACE ESPANA, SA, Spain
- 5. AbsInt Angewandte Informatik GmbH, Germany

CONTACT - Project Coordinator

Aleksandar SIMEVSKI IHP GmbH Im Technologiepark 25 15236 Frankfurt (Oder), Germany

Tel: +49 335 5625 416 Fax: +49 335 5625 671

E-mail: simevski@ihp-microelectronics.com

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870365.

Disclaimer: this flyer reflects only the authors' views and excludes the EC and REA from responsibility.

HORIZON 2020

www.moral-project.eu

Start: 01.01.2020 Duration: 40 months Project number: 870365 Costs: EUR 2.999.881,25

Funded by the European Commission

Control Contro

Fig. 4: MORAL functional demonstrator board

THE MORAL PROJECT

OBJECTIVES

Develop a completely European, ITAR-free, Rad-hard Microcontroller for Space Applications

Establish a Start-up company for selling the Microcontroller and for providing customer support

Fig. 2: MORAL - microcontroller chip architecture

ON-CHIP PERIPHERALS

The MORAL chip is connected to the outside world through a memory controller providing access to FLASH, EEPROM, SRAM, SDRAM

Standard peripherals like ADC, DAC, CAN, UART, SPI, SpaceWire, GPIO, PWM, etc.

OPTIMIZING C COMPILER

AbsInt's CompCert as the first commerciallyavailable, formally-verified, optimizing C compiler will be ported to PEAKTOP

NOVEL PROCESSOR ARCHITECTURE

RAD-HARD COMPONENTS

The microcontroller is based on the completely novel PEAKTOP architecture

PFAKTOP

execution pipeline

MMU/MPU

Cache subsystem

Debug

unit

Fig. 1: PEAKTOP core

Interrupt

controller

Bootrom

SRAM

System

timer

User

timer

PEAKTOP Instruction	1
Set Architecture (ISA))

- Simple and Flexible
- Orthogonal
- Regular
- Circular

Rad-hard digital libraries	
Rad-hard SRAM - 512KB	
Rad hard analog components: ADC, DAC	Rad

Fig. 3: Inverter gate with Edge-Less Transistors (ELT)

REAL-TIME OPERATING SYSTEM

SYSGO's PikeOS real-time separation kernel with the MILS (Multiple Independent Levels of Security) approach will be ported to PEAKTOP

STRESS TESTS - TRL 7 TARGET

Stress tests will be conducted for the validation of the chip under irradiation, i.e., Total Ionizing Doze (TID) and Single Event Effects (SEE)